Baire and Volterra spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on Volterra and Baire spaces

 In Proposition 2.6 in (G‎. ‎Gruenhage‎, ‎A‎. ‎Lutzer‎, ‎Baire and Volterra spaces‎, ‎textit{Proc‎. ‎Amer‎. ‎Math‎. ‎Soc.} {128} (2000)‎, ‎no‎. ‎10‎, ‎3115--3124) a condition that‎ ‎every point of $D$ is $G_delta$ in $X$ was overlooked‎. ‎So we‎ ‎proved some conditions by which a Baire space is equivalent to a‎ ‎Volterra space‎. ‎In this note we show that if $X$ is a‎ ‎monotonically normal $T_1...

متن کامل

a note on volterra and baire spaces

in proposition 2.6 in (g‎. ‎gruenhage‎, ‎a‎. ‎lutzer‎, ‎baire and volterra spaces‎, ‎textit{proc‎. ‎amer‎. ‎math‎. ‎soc.} {128} (2000)‎, ‎no‎. ‎10‎, ‎3115--3124) a condition that‎ ‎every point of $d$ is $g_delta$ in $x$ was overlooked‎. ‎so we‎ ‎proved some conditions by which a baire space is equivalent to a‎ ‎volterra space‎. ‎in this note we show that if $x$ is a‎ ‎monotonically normal $t_1$...

متن کامل

Baire Spaces, Sober Spaces

In the article concepts and facts necessary to continue forma-lization of theory of continuous lattices according to [10] are introduced. The notation and terminology used here are introduced in the following papers:

متن کامل

Products of Baire Spaces

Only the usual axioms of set theory are needed to prove the existence of a Baire space whose square is not a Baire space. Assuming the continuum hypothesis (CH), Oxtoby [9] constructed a Baire space whose square is not Baire. We will show in this paper that the assumption of CH is unnecessary. Such results are greatly enhanced by Krom [5], who showed that if there is such an example, then there...

متن کامل

Baire Spaces , Sober Spaces 1 Andrzej

In the article concepts and facts necessary to continue formalization of theory of continuous lattices according to [11] are introduced. and [4] provide the notation and terminology for this paper. 1. PRELIMINARIES The following two propositions are true: (1) For all sets X, A, B such that A ∈ Fin X and B ⊆ A holds B ∈ Fin X. (2) For every set X and for every family F of subsets of X such that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2000

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-00-05346-6